
Partial Solution Set, Leon §3.1

3.1.3 We are to show that the set C of complex numbers, with scalar multiplication defined
by α(a + bi) = αa + αbi and addition defined by (a + bi) + (c + di) = (a + c) + (b + d)i,
satisfies the eight axioms of a vector space. This is only a partial solution.

A1: Let a + bi, c + di ∈ C. Then

(a + bi) + (c + di) = ((a + c) + (b + d)i) (By definition of complex addition)

= ((c + a) + (d + b)i) (Real addition is commutative)

= (c + di) + (a + bi) (By definition of complex addition)

A2: Similar to A1; pick three complex numbers, use the definition of complex addition
as often as necessary, together with the known associativity of real addition, to show
that complex addition is associative.

A3: The zero element is 0 = (0 + 0i).

A4: To show existence of the additive inverse, choose an arbitrary complex number (say,
x = a + bi) and construct its additive inverse. This will be made easy by your
knowledge of real additive inverses.

A5: We must prove that scalar multiplication distributes over complex addition. Let
a + bi, c + di ∈ C, and let α ∈ R. Then

α((a + bi) + (c + di)) = α((a + c) + (b + d)i) (Def’n complex addition)

= α(a + c) + α(b + d)i (Def’n of scalar mult. in C)

= (αa + αc) + (αb + αd)i (Distributivity in R)

= (αa + αbi) + (αc + αdi) (Def’n of complex addition)

= α(a + bi) + α(c + di) (Def’n of scalar mult. in C)

A6: Similar to A5.

A7: Use definition of scalar multiplication in C and associativity of real multiplication.

A8: Use definition of scalar multiplication in C and the fact that 1 is the multiplicative
identity in R.

3.1.4 Use the solution to 3.1.3 as a template for your solution. The objects are different
(matrices rather than complex numbers) and the operations are necessarily defined dif-
ferently, but these differences have no effect on the structure - Rm×n is simply another
vector space. The challenge is to avoid committing yourself to concrete values of m
and/or n.

3.1.6 You can use either my solution to 3.1.3 or your own solution to 3.1.4 as a guide. If you
found #4 easy, you might skip this one. If you found #4 difficult, then by all means do
this one if you have time.



3.1.7 Show that the element 0 in a vector space is unique.

Note: This is a standard uniqueness argument. We assume that we have two zero
elements and then discover that they are identical twins. The proof goes like this:

Proof: Let V be a vector space. We know that V contains at least one zero element,
since V satisfies the axioms. We must show, then, that V contains at most one zero
element. So suppose that v and w are zeros in V . Then

v = v + w (Since w is a zero)

= w + v (Since addition commutes)

= w (Since v is a zero)

Thus uniqueness is proven, and it now makes sense to reserve a special symbol (0) to
denote the zero element. 2

3.1.11 Let V be the set of all ordered pairs of real numbers with addition defined in the usual
fashion by (x1, x2)+(y1, y2) = (x1 +y1, x2 +y2), but with scalar multiplication defined by
α ◦ (x1, x2) = (αx1, x2). Is V a vector space with these operations? Justify your answer.

Solution: No, this is not a vector space. Axiom 6 fails.

3.1.12 Let R+ denote the set of positive real numbers. Define the operation of scalar multi-
plication, denoted ◦, by α ◦ x = xα for any real α and x ∈ R+. Define addition, denoted
⊕, by x ⊕ y = x · y for all x, y ∈ R+. (The dot represents the usual multiplication of
reals.) Is R+ a vector space when equipped with these operations? Prove your answer.

Solution: Yes, this is a vector space. To prove this, we must verify that the axioms
hold. Here is a partial proof:

A1: Use the definition of ⊕, together with the commutativity of ordinary real multipli-
cation.

A2: Use the definition of ⊕, together with the associativity of ordinary real multiplica-
tion.

A3: The zero element is the number 1, since for any x ∈ R+ we have x ⊕ 1 = x · 1 = x.

A4: The additive inverse in this oddball space is the usual multiplicative inverse. That
is, for any x ∈ R+, 1/x ∈ R+, and x ⊕ 1/x = x · 1/x = 1. By the preceding
argument, 1 is the zero element.

A5: Let α ∈ R and x, y ∈ R+. Then

α ◦ (x ⊕ y) = α ◦ (x · y)

= (x · y)α

= xα · yα

= (α ◦ x) · (α ◦ y)

= (α ◦ x) ⊕ (α ◦ y)
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A6: Let α, β, x ∈ R. Then

(α + β)x = xα+β

= xαxβ

= αx ⊕ βx

A7: Let α, β ∈ R, and x ∈ R+. Then

(αβ) ◦ x = xαβ

= xβα

=
(
xβ

)α

= α ◦
(
xβ

)
= α ◦ (β ◦ x)

A8: Let x ∈ R. Then 1 · x = x1 = x, where the first equality is by our local definition
of scalar multiplication and the second is by the usual laws of exponents.
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